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Casimir effect, the gauge problem and seagull terms? 

E B Manoukian 
Department of National Defence, Royal Military College of Canada, Kingston, Ontario 
K7K 5L0, Canada 

Received 29 August 1986 

Abstract. Much recent interest in the classic Casimir effect problem has urged us to treat 
this phenomenon carefully by giving special attention to the gauge problem, which has 
been almost enitrely swept under the carpet in the past, and to seagull terms. By quantising 
in the so-called Coulomb gauge, where the dynamical degrees of freedom are apparent 
and the quantisation problem is unambiguous, the expression for the Casimir effect is 
derived by explicitly taking into account seagull terms. Although a physical quantity ought 
to be gauge independent a specific gauge, nevertheless, has to be chosen for its evaluation. 

1. Introduction 

Much attention has been given recently (e.g. GonzQles 1986, 1985, DeRaad 1985, De 
Raad and Milton 1981, Davies and Unwin 1981, Kennedy et a1 1980, and references 
therein) (see also Balian and Duplantier 1978, Brown and Maclay 1969, Schwinger 
1975, Schwinger et af 1978 with the latter two in the source theory scheme, for some 
earlier work) to the classic Casimir effect (Casimir 1948) which has been experimentally 
observed (e.g. Sabisky and Anderson 1973, Israelachvili and Tabor 1972, Tabor and 
Winterton 1969, Sparnay 1958, Deriagin and Abrikosova 1957). The basic physical 
phenomenon, as observed in the simplest situation, is the appearance of an attractive 
force arising between two neutral macroscopic conducting plates in a vacuum, which 
is attributed to the non-zero vacuum stress of the Maxwellian field. The emphasis 
in the abovementioned recent theoretical studies was mainly on improvements of com- 
putational techniques, but the gauge problem was, unfortunately, almost entirely 
neglected. This led to treating the Maxwellian field components as if they are indepen- 
dent or to study the problem for a scalar field and the final result was them multiplied 
by two to take into account the photon spin. The purpose of this paper is to remedy 
this problem, in the full context of quantum field theory, by quantising the Maxwellian 
field at the outset in the so-called Coulomb gauge where the degrees of freedom are 
apparent from the very beginning and a consistent formulation (Manoukian 1986, see 
also Fradkin and Tyutin 1970) of the gauge problem may be carried out by imposing 
commutation relations only on the independent dynamical degrees of freedom. We 
also pay special attention to seagull terms arising from the action principle involving 
constrained dynamics. Although a physical quantity ought to be gauge independent 
a specific gauge, nevertheless, has to be chosen for its evaluation. 

i Work supported by the Department of National Defence Award under CRAD No 3610-637:F4122. 
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2. Derivation 

The Lagrangian density for the Maxwellian field in the presence of an external current 
J ,  may be written as 

L =  -'F 4 P!, F""+A,J" (1) 

akAh = 0 k = 1 ,2 ,  3. ( 2 )  

and we impose the constraint 

The latter equation allows one to solve (Fradkin and Tyutin 1970, Manoukian 1986) 
for A': 

A' = -a- ' (a 3 1  A' )  i = 1 , 2 .  (3)  

By treating A', A', A* as basic field components in (1) (later we will see in ( 7 )  that 
A' is a dependent field) one readily obtains the field equations: 

a k f k O  = - J o  k = l , 2 , 3  (4) 

d,F" =d, 'd '(a.F"'+ J7) - J '  i = 1, 2. ( 5 )  

Upon eliminating the expression in the square brackets on the right-hand side of (5)  
and combining the resulting equation with (4) we obtain 

and the latter is consistent with a,a,Fp'" = 0 for all J,. That is, J ,  need not be conserved 
and we may vary J,, arbitrarily to generate Green functions. This point cannot be 
overemphasised. 

The canonical momenta as obtained from (1)  are 

n(A')=O 7 ( A ' )  = 7 ~ '  = aj'a"'' i = 1 , 2  (7) 

and hence A' is a dependent field so defined since its conjugate momentum vanishes. 
The basic canonical commutation relations imposed are then 

S(x"-x")[A'(x'), ~ ' ( x ) ]  = iG"S(x - x') I, j = 1,2.  (8) 

From (4) and (7)  we may also write (see also Fradkin and Tyutin 1970): 

k = 1, 2, 3; i = 1, 2 .  Equations (8) and (9) then lead to the basic commutation relation 

aka"' 
a- 

6(xo-  x'')[A"'(x'), F"(x)] = i( T- 6'"') 6(x - x ' )  (10) 

k, m = 1, 2, 3, where we have also made use of (3).  

be 
The equation of motion of the electric field E k  = Fok may be obtained from (6)  to 

where we have taken vacuum expectation values. 
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We use the action principle (Schwinger (1951a, b, 1953, 1954) and, in particular, 
Lam (1965); see also Manoukian (1985)) to generate 

-1- . a  ( F " k ( x ) ) = ( ( A , ( x ' ) F o k ( x ) ) + ) - i  (( ___ SJ":x ' )  F " * ( x ) )  +) 
S J L ' ( x ' )  

(12) 

where we have made use of (9) with its explicit dependence on J". The so-called 
Schwinger term, for v = 0, on the right-hand side of (12) should be noted and cannot 
be neglected. We also make use of the basic property of the time-ordered products: 

(13) 

Again the commutation relation expression on the right-hand side of (13) cannot be 
neglected, and upon using the derived equation (10) it yields 

a" 
a = ( ( A , ( x ' ) F o k ( x ) ) + ) - i g , , ( ' ~ S ( x  - x ' )  

dh( (A"  ( ~ ' ) F ' " ( X ) ) + )  = S ( X "  - x ' O ) ( [ A " ( x ' ) ,  F o k ( x ) ] )  + ( (dbA" ( x ' )  FoA ( x )  I+) .  

Equations ( 1  1)-( 14) then give the following equation for the vacuum expectation value 
of the time-ordered products of the electric field, in the absence of the external current, 

(15) O ( ( F " ~ ( X ' ) F ~ " ( X ) ) + )  = -i[z2Skm - a " a " ] ~ ( x  - x') 

with E" = Fo". Similarly, for the magnetic field components F m h  we have 

U(( F r y (  x ' )  F m k (  x ) ) , )  = i 8"[d"SA' - a " S " ' ] S ( x  - x ' )  - i  dr [d "S" '  - d"S" ' ]S(  x - x ' )  (16) 

Equations (15) and (16) are the basic equations to be solved. We now consider 
two macroscopic neutral perfectly conducting parallel plates, with a separation distance 
a, placed parallel to the x y  plane situated at z = 0 and z = a,  respectively. We also put 
confining plates at z = L and z = - L  (Schwinger 1975) for convenience of the analysis 
and finally let L + OD. 

The boundary conditions are (cf Jackson (1975) and Hauser (1971) for a lucid 
discussion of boundary conditions): 

with Bl = F23, B'= F31 = F l Z  

E ' = O  E'=O B ~ = O  (17) 
for z = 0 and z = a. 

For example, from (15) 

~ ( ( E ' ( x ' ) E ' ( x ) ) + )  = -i(a'a'+a'd')~(x - x ' )  (18) 
and the boundary condition on E '  in (17) implies a Fourier sine series for S(z -z ' )  
in (18): 

( z ' - d )  
sin nr- x 2 ,  ( z - d )  S ( z - z ' ) =  C -sin nr- 

n = ~  D D D 

where ( D  = a,  d = 0 )  for 0 < z ,  z ' <  a ,  ( D  = L -  a,  d = a )  for a < z, z ' <  L ,  ( D  = L, d = 0 )  
for - L  < z, z ' <  0 ,  using the completeness relation of the sine functions. On the other 
hand 

Z ( ( E ~ ( X ' ) E ' ( X ) ) + )  = ia'a'S(x - x') i = 1 , 2  (20) 
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and the boundary conditions E ’  = 0, E’ = 0 in (17) imply a Fourier cosine series for 
6 ( z - z ’ )  in (20): 

( z ‘ - d )  
D 

cos nir- l ” 2  ( z  - d )  s ( z - z ’ ) = - +  C -cos nr- 
D , ,=ID 2 0  

where (0, d )  is defined below (19). We then note, in particular, from (20) that 

((djE3(x’).  )+) = 0 (22) 

0 (( B3( x’) B3( x )  )+) = -i( d i d ’  + d2d2) 6 ( x  - x’) (23) 
and the boundary condition B3 = 0 in (17) implies the expansion in (19) for 6 ( z  - z ’ ) .  
Also from (16) 

for z’ = 0, z’ = a. Similarly for the magnetic field component B’ we have from (16) 

U((B’(x‘)B3(x))+)  = -id’d‘36(~ -x’)  i = 1 , 2  (24) 
and 

( ~ ; B ’ ( x ’ ) .  )+) = 0 (25) 

The energy density Too may be obtained from (7) and ( 1 )  to be, in the absence of 
for z’ = 0, z’ = a .  

the external current, 
T oo-  - (  a, -1 d 0 FI3)doA, +$F,,F&’” 

= ( d ; ’ a 0 ~ k 3 ) a o ~ k  +$F,,F~” (26) 

(27) 
The total three-dimensional derivative on the right-hand side of (27) cancels out above 
and below the plates for L+w by the Green theorem, and we may effectively write 

(28) 
where we have set Ao=O consistent with the field equation (4): A’= -(1/i2)Jo. 

or 

Too = dk[(d;’doA3)doAk] -doAkdoAk +iFokFoh +aFmkFlnA, 

T -1 O k  Ok+$FmkFmk 
oo-2F F 

From (15 )  and (16) we may write 

o((E,(x’) E,(x)),) = -i(i2+d3a3)8(x - x f )  (29) 
O((E3(x‘ )E3(x) )+)=  -i(d’d’+d2d2)6(x-x’) 

(30) 
U( ( B3( x‘) B3( x)),) = -i(d’d’ + d’d*)S ( x  - x’) 

= -i(i2 -d3d’)6(x - x’) 

= -i(;j2-d3a3)6(x - x r )  ( 3 1 )  

O((B,(x’) BT(x))+) = - i (~*+d3d3)6(x -x’). (32) 
By using the definition from (28): 

d3x(Too(x))=; d3xdx”  6(x0-x”)((E(x, x”) * E ( x ,  x’)),) I 
+; d3x dx” ~(xO-X’O)((B(X, x’O) * B ( x ,  x’))),) (33) I 

we obtain from (29)-(32) by making use of the analysis given through (17)-(25): 

d2k X I d3x( Too( x ) ) = A 1 j dx ‘O 6 ( xo - x”) (2.ir)~ { * } 
n = l  

(34) 
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{ 1 = [ P + ( ? ) ~ ] I ’ ~  exp{ -i[ P+ (~)’]l’’Ix.-.-.) 

+ [ k2 + ( y )  ’1 I ”  exp( -i [ k z  + ( y )  ’3 1’21x~ - x.01) 

+ [ ~ + ( z ) ’ ] ’ ’ ~ e x p {  L - a  - i [ ~ 2 + ( ~ ) 2 ] 1 ’ 2 ~ x ~ - x ~ ~ ~ ]  L - a  (35) 

where A is the area of each of the macroscopic plates and where we have used the 
normalisation conditions 

Upon identifying the left-hand side of (34) with the total energy E in the system, 
we obtain for the Casimir force F by straightforward manipulations 

- I  - - -- 1 lim 1 d r - ~ [ ( l - e x p - i n t T l )  6 ( r )  d2 
2 r a  L - . ~  1171 dl71 a 

--( a 1 -exp--Irl)-’] 
L - a  L - a  

which is exactly twice the result obtained by Schwinger (1975) for a scalar field. The 
right-hand side of (37) is then readily evaluated (Schwinger 1975) to yield 

by using the identity and the expansion 

The inclusion of temperature amounts to replacing (Schwinger 1975) the exponen- 
tials exp(-iElrl) in (35) by 

where P = l / k T  and this is worked out in detail in Schwinger (1975) and will not be 
repeated here, giving the experimentally difficult to verify Lifschitz (1956) result: 

1 “  r‘ 1 

pa , ,=I  45 P F = - 7 ~ 7  n’ In[ 1 -exp(-n@/a)] --y (42) 
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with a high-temperature limit 

where l ( n )  is the Riemann zeta function. 
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